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Abstract

Cell sorting occurs when a heterogeneous cell mixture segregates into distinct regions and is thought
to play an important role in development and disease. Although sorting has been well-studied using
simulations that model cells as rigid particles, recent discoveries suggest that in confluent tissues where
there are no gaps or overlaps between cells, both fluid-solid transitions and surface tension are strongly
influenced by cell shapes and topologies. Even experimentally, robust cell sorting is observed in 2D
co-culture of breast carcinoma and non-malignant cell lines. Therefore, we seek to analyze the behavior
of cell sorting in a confluent model of tissues. Using a 2D Self-Propelled Voronoi (SPV) model, we
investigate the role of disparity in cell shape and size in cell sorting for bidisperse mixtures. We find
minimal sorting when cell shapes differ, but perhaps more enhanced sorting when cell sizes differ. For
the latter finding, we propose additional tests to better determine the robustness of our results. We will
also discuss how our results differ from bidisperse mixtures of particles and implications for biology.



1 Introduction

Cell sorting is the process whereby a mixture of two randomly mixed cell populations segregates into
distinct domains homogeneous in cell types. Pattern formation by segregation of cell types is a crucial process
during disease proliferation and embryonic development. In fact, a long-standing question in embryology
is how cells organize themselves into coherent patterns in the absence of pre-existing or external sources of
spatial information [9]. To understand this process better, numerous experiments on heterogeneous mixtures
have been carried out in-vitro [12]. Let us try to understand cell sorting terminology by referring to some
in-vitro cell sorting experiments that were done using cell types of different histological origins. In most of
these experiments, cells from two different embryonic origins sort into structures where cells of one type form
a layer surrounding those of the other type (as shown in figure:1–a). For example, in a mixture of malignant
and normal breast cells (figure:1–b), the normal cells form a continuous outer layer surrounding an internal
mass of malignant breast cells. Cell sorting is also used in the formation of organoids from stem cells[44].
Therefore, understanding the physical mechanisms that drive co-culture segregation can help us understand
the process of embryogenesis and organ development and to devise better methods for tissue engineering.

(a) (b)

Figure 1: (a) Formation of cartilage and loose mesenchyme from a mixed aggregate of dissociated cells [12]
Abbbreviations: c : cartilage; Im : loose mesenchyme; (b) MCF-10A (green: normal breast epithelial cells)
encloses MDAMB-436 (blue: motile-invasive cancer cell line)[24]

Cell sorting also plays a crucial role in cancer physics. Cancer is a collective phenomenon. Hence, it
is important to investigate how tumour boundaries are stably maintained until metastasis occurs, enabling
cells to leave the tumour and infiltrate other parts of the body. These metastatic cells seem to be hindered by
two mechanical mechanisms: blocking and jamming. Blocking refers to an external steric barrier which cells
cannot pass, while jamming describes a rigidity transition caused by mutual steric hindrance of the tumour
cells [18]. Tumor heterogeneities might allow some parts of the tumor to fluidize while others remain rigid.
Understanding sorting in such mixtures might explain what stabilizes the boundary between carcinoma and
normal cells and also help answer -what forces prevent malignant cells from exiting a solid tumor? [18].
Understanding this will be major leap in cancer physics. It can help us predict the collective tissue property
based on the mechanical properties of individual cells from minimally invasive clinical samples and therefore
come up with more powerful and accurate bio-markers that forecast cancer invasiveness.

Existing hypotheses do not yet provide a complete picture

As cell sorting is such an important process in developmental biology, many cell sorting mechanisms
have been proposed. One of the first ideas to explain the way in which patterns such as stripes, spots
and spirals may arise naturally out of a homogeneous, uniform state [13] is based on morphogens. For a
system which is originally homogeneous, these morphogens react together and diffuse through a tissue. This
spatial organization of morphogens drives the formation of chemical pre-patterning. This is known as the
‘Reaction-Diffusion’ view of morphogenesis asserting that mechanical rearrangements of cells are driven
by pre-existing chemical pattern:

chemistry⇒ geometry⇒ mechanics

This theory based on the reaction-diffusion assumption has been widely applied for several pattern formation
events although not many morphogens have been identified as yet. Models based on this theory are generally
very sensitive to variations in parameters. But in real embryonic development, for example, pattern formation
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is a very stable process and is hence expected to be resistant to small perturbations in the patterning process
[11].

The elusive nature of morphogens and experimental evidence that cells exert traction forces on their
environment [2] were the impetus for the initial development of a mechanochemical modelling approach.
To contextualize the idea- many embryonic cells generate substantial contractile forces as they spread and
crawl. These forces mechanically deform each cell’s local environment, and the resulting distortions can
alter subsequent cell movements by convection and the mechanisms of contact guidance and haptotaxis (a
directional cell movement or growth in response to adhesive substrates) ([14]). The approach takes into
account the cumulative effects of these cell-generated forces and shows how they can lead to the formation of
regular large-scale patterns in cell populations. In contrast to the ‘chemical prepattern’ view, the Murray-
Oster mechanochemical model of pattern formation is based on the view that the tissue geometry is
the result of cell mechanics, and need not be specified by a detailed chemical prepattern:

chemistry⇒ mechanics⇒ geometry

Another theoretical approach, which is more relevant to this project, is the sorting model. While there
are several versions of this model, they all assume that tissues behave like liquids. Thus mixtures of two
different kinds, sort in a fashion similar to segregation of two immiscible liquids. For example, when oil sorts
from water, an oil droplet has a surface tension associated with it that governs the way it grows by further
coalescing with other droplets. The different versions of sorting models, which I will be describing next,
basically try to explain what is contributing to this surface tension in the context of tissue co-cultures. The
first among all is the Differential Adhesion Hypothesis (DAH) which was proposed by Steinberg in 1963
([3]). The idea of DAH is that tissue behave like immiscible liquids composed of motile cells that rearrange
in order to minimize their interfacial tension. It additionally assumes that difference in surface tension of
tissues are caused by differences in cell-cell adhesion. This hypothesis also has experimental support later
as TST was found to be directly proportional to cadherin (a type of cell adhesion molecule) expression [24].

Figure 2: Prediction of the pattern change during differentiation of fibroblasts into chondrocytes according
to the three kinds of models. A: shows a result of a cell sorting simulation (Mochizuki et al., 1996) when cell
motility was altered. B: shows the pattern predicted by the reaction-diffusion model (Kondo and Asai, 1995)
when the diffusion coefficient was altered. C: is the pattern formation in vitro (adapted from Vernon et al.,
1992) with varied ECM properties. Computer simulation of the mechanochemical model was unsuccessful
because of its complexity. The mechanochemical model was ruled out as a mechanism for this differentiation
process. [15]

Although DAH is one of the most accepted hypotheses in the field, it alone is not sufficient to explain
sorting behaviour in germ-layer organization in zebrafish [21]. Harris [5] and later Brodland [6], put forth the
second candidate as actomyosin contractility. According to differential surface contraction hypothesis
(DSCH), cells with higher contractility have lower tissue surface tension. A slightly different version of this
theory is the DITH- differential interfacial tension hypothesis. DITH is essentially complementary to
DAH. It is based on the same physical principles, but introduces cortical contractility as the key force that
must be balanced to reach equilibrium. Experimental evidence for this hypothesis was found for gastrulating
zebrafish embryos[7]. Mertz et al., [26] also found that DITH explains the surface tension better than DAH.
They compared a simple physical model of cohesive colonies as adherent contractile disks. The model
captures the essential observations and suggests that the apparent surface tension in the large-colony limit
is driven by acto-myosin contractility.
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(a) (b)

Figure 3: (a) Domain formation in a bimixture of healthy breast cells and metastatic breast cells- Käs group :
The green tagged cells are MDA-MB 231 ( human breast cancer cell line) and the rest are MCF 10a (normal
human mammary gland cell line ) (b) Localization of traction force at the boundary of a colony of cells[26].
Scale bars represent 50 m.

Both of the above hypotheses assume that all cells inside a cluster are mechanistically identical and
that either adhesion or contractility at a cellular level contributes in some fashion to the macroscopic TST
(tissue surface tension). But there are several evidences that suggest that cells respond differently when
at the boundary versus when they are in bulk i.e they mechanically polarize[22] at the boundary. To
understand this effect better, let us consider the smallest system - a doublet of cells. Since both the cells
are at boundary, according to this theory, Cadherin-mediated adhesion, reorganizes the actomysin network
to intensify contractility along the external edge of a doublet and down-regulate along the internal interface.
Extending this idea to larger aggregates, one might expect the contractility to be much lower inside the
aggregate than on the periphery. It has been recently shown that this effect at the periphery is similar to
the effect of having an increased effective adhesion [25]. The effective adhesion according to this hypothesis,
and hence the name- extended DAH, has orders of magnitude higher contribution from contractility than
from adhesion. This suggests that TST is dominated by the contribution of mechanical polarization rather
than adhesion.

The sorting model is based on the idea that tissue behave like liquids, in that they tend to minimize their
surface tension. Hence, an agglomerate will always be a spherical droplet and in the presence of another
agglomerate, it fuses to form another spherical droplet. But some biological tissues also have solid-like
properties. For example, coalescence experiments in cancer cell lines show an arrested fusion that persists
over 24 hours [4]. For these solid-like aggregates, an arrest is expected when the tissue surface energy
precisely balances the resistance to plastic deformations in the solid. Also, the agglomerates formed by
carcinoma cells either in co-cultures (figure:3–a) or homogeneous suspensions, are not spherical in shape
[24]. They have protrusions and some even have holes. Therefore, one should look beyond these theories to
explain tissue dynamics.

Several computational approaches to simulate tissues

As theories evolved, computational expertise also grew hand in hand in an attempt to replicate experi-
mental observations via simulations. Morphogen associated simulations had numerous parameters and the
outcomes were heavily dependent on these parameters. Mechanochemical models, on the other hand, are
difficult to simulate as the Extra-Cellular Matrix (ECM :surrounding environment of a tissue in-vivo) is
complex to model. So simulations that required a minimal set of parameters and yet captured some basic
features of cell sorting were developed. Particle models are simpler to simulate and so one of the techniques
used to study tissues is a self-propelled particle( SPP) model [38, 27]. These models have nicely incorporated
motility and persistence into cellular motion and have interesting cluster formations that reproduce density-
dependent clustering observed in living cells very well. But much of the tissue dynamics in-vivo occurs while
maintaining confluence (spatial density is unity); which is why space-filled models will be preferred over
particle models here.
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(a) (b)

Figure 4: (a)-a apicolaterally enriched adhesion molecule Cadherin and components of the actin cytoskeleton
(a)-b Cell packing geometry defined by the network of adherens junctions [31] This network is described by
a vertex model with NC polygonal cells numbered by a = 1...NC and NV vertices, numbered i = 1. NV
at which cell edges meet. (b) Simulation of cell sorting using CPM: There are three cell types, “light”,
“dark”, and “medium”, τ ⊂ {l, d,M}. Surface energies have been assigned values of J(d, d) =2, J(d,l) =11,
J(l,l)=14, and J(d,M) =J(I,M) =16.

Let us glance through some of the relevant computational and theoretical advancements made by the
community in simulating confluent tissues. For tessellating a space, space-filling models generally use Potts
model, vertex and voronoi tessallations (VT). A Cellular Potts Model (CPM) [28] is a stochastic model
where cells in a monolayer are represented as regions in figure 4–b on a lattice. The dynamic evolution
calculated with a Monte Carlo algorithm is based on a Hamiltonian that includes interfacial tension, area
conservation and active motility.

HCPM =
∑
σ

λv(Vσ − V Tσ )2 +
∑
(x,x′)

J(τ, τ ′)(1− δσ,σ′) (1)

The first summation runs over all cells and penalizes the deviation of the cell’s volume (Vσ) from a
prescribed target volume (V Tσ ) with a coefficient λv. The second term sums the adhesion energies (J) of
all pairs at the cell boundaries where the cells occupying adjacent lattice site pairs (x,x′) are different i.e.
σx 6= σx′ . As J is typically positive for heterotypic contacts i.e. τ 6= τ ′, cells tend to minimize their surface
area with other cells or the medium, making the adhesion term equivalent to surface tension. Regarding
the ease of implementation, a single cell in the CPM clearly has a lot more than 1 degree of freedom, hence
larger systems will be slower to simulate.

The active vertex model has a similar energy functional except with explicit dependence on the
perimeter up to second order. Each cell, as shown in Figure 4–a tries to minimize this energy functional.

HAVM =
∑
α

K

2
(Aα −A(0)

α )2 +
∑
<i,j>

Λij lij +
∑
α

Γα
2
L2
α (2)

The energy function describes forces due to cell elasticity, actin-myosin bundles, and adhesion molecules.
The first term describes an area elasticity with elastic coefficients K, for which Aα is the area of cell α and

A
(0)
α is the preferred area, which is determined by cell height and cell volume. The second term describes

line tensions Λij at junctions between individual cells. Here, lij denotes the length of the junction linking
vertices i and j and the sum over < i, j > is over all bonds. Line tensions can be reduced by increasing
cell-cell adhesion or reducing actin-myosin contractility. The third term describes the contractility of the
cell perimeter Lα by a coefficient Λα, which could reflect, for example, the mechanics and contractility of
the actin-myosin ring. The degrees of freedom of a single cell here are its vertices.
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Self-propelled Voronoi model, on the other hand, uses the same energy functional as 2 but with
different degrees of freedom. The 2D version of this is explained in detail in the following section. As the
degrees of freedom for a single cell here is just its own center, it is much faster than all of the above models.
SPV implementation is easier and one can easily incorporate activity by adding propulsion to cell centers.
Homogeneously growing, confluent monolayers are very accurately described by Voronoi tessallations of their
nuclei [29].

Recently, a unique kind of rigidity transition was discovered in a 2D vertex model [36]. A dimensionless
parameter called the shape index (the ratio of perimeter to the square root of area) is a way of quantifying
whether the cell is roundish or elongated. It has a very low value if it is roundish as it has the lowest perimeter.
Shape index is important because, in experiments, mesenchymal (fluid-like) cells are very elongated whereas
epithilial (solid-like) cells are more roundish [1]. A transition from a fluid-like to a rigid-like tissue was
observed at a critical value of shape target index 3.81. Below this critical value of target shape index, the
tissue behaves like a rigid elastic solid. This rigidity vanishes when the shape target index exceeds 3.81 and
the tissue fluidizes. Since this result was obtained without any activity in the system, this transition was
also explored in the SPV model with activity. As found by Bi et al. [20], a fluid to solid transition also occurs
when the average shape parameter is 3.81. For more solid-like cells, it remains 3.81; whereas for liquid-like
cells, it strives to attain its target shape index. Bi et al also demonstrated that the phase boundary depends
on the activity. The phase diagram is shown in Figure 5–a.

Goal

Given the biological phenomenon of cell sorting, we will construct a bidisperse mixture of two distinct
cell types in an SPV model and look for mechanisms for cell sorting. Given the hypotheses described above
involving surface tension, we will focus on the fluid region of the SPV rigidity phase diagram. In other words,
each cell type independently will be in the fluid region. We will then explore whether or not two distinct
cell types sort (demix) depending on the parameters. This is our goal.

More specifically, we ask the following questions: Hypothesis 1 - Is shape anisotropy a mechanism for
cell sorting? Hypothesis 2 - Is inhomogeneity in size a mechanism cell sorting? To answer these questions,
we present the model and methods used, then present results, followed by a discussion of the implications
of our results.

(a)

Figure 5: (a) Glassy phase diagram for confluent tissues [20] : Yellow dots are fluid like and are elongated
as depicted by their shape parameter.
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2 Methods and Models

We simulate the confluent tissue mixtures using a recently developed Self Propelled Voronoi (SPV) model
for confluent tissues. This model merges vertex model ( eq2) and self propelled particle models [35]. In this
model each cell is defined by lines defined by the lines bisecting the segments connecting the center of the
cell (~rl) to its neighbors, resulting into a polygon of of area Ai and perimeter Pi. The mechanical cell-cell
interactions are described by the shape energy E used in the VM. Each cell, with area Ai and perimeter Pi,
pays a quadratic penalty to deviate from its preferred area and perimeter (A0 & P0 respectively). Deviations
can be made costly by increasing the area stiffness Ka or cortex stiffness Kp. Energy Functional for the jth

cell-
Ej = Ka(Aj −A0)2 +Kp(Pj − P0)2

It can be non-dimensionalised by dividing the entire equation by KaA
2
0 -

ej = (aj − 1)2 +
1

r
(pj − p0)2

where p0 = P0/
√
A0 , is the target shape index; aj = Aj/A0 and pj = Pj/

√
Aj are the non-dimensionalised

area and perimeter respectively; r = Kp/(KaA0) is a dimensionless parameter controlling the ratio between
both the stiffnesses. If adhesion is stronger than contractility for a cell, it will have a higher perimeter to
maximize it’s interface with neighbouring cells. For the same reason, a cell with dominant contractile term,
will be more roundish. Hence p0 is higher for highly adhesive cells and lower for roundish cells. Cells exert
force on each other as they want to minimize the overall mechanical energy. This leads to a force on each
cell given by Fi = −∇iE.

We then add a self propulsion force F0 that rep-
resents cell motility and polarization. The equation
of motion for a single cell takes the form-

ṙi = µFi + v0n̂i

where E =
∑
Ej and is a non-local effective me-

chanical force experienced by the ith cell. Here
v0 = µF0 is the self propulsion speed of individual
cells, n̂i = (sinθi, cosθi) is the direction of polariza-
tion and µ is the mobility (inverse of drag force due
to interactions with the fluid and the substrate). The
polarization angle dynamics is entirely controlled by
white rotational noise ηi(t) as-

θ̇i =
√

2Drηi(t)

〈ηi(t)ηj(t′)〉 = δijδ(t− t′)
where ηi is the white noise process with mean zero
and variance Dr. In the absence of mechanical in-
teractions, an isolated cell performs a persistent ran-
dom walk with a long time effective diffusion rate of
v20/(2Drµ) as in SPP models. For most of our sim-
ulations Dr = 1 implying a persistence timescale of
1/Dr = 1 unit. The simulations use over-damped
Euler integration method. After each time step, a
new Voronoi tessellation is generated based on the up-
dated cell positions. The cell shapes are determined

in the process and the exchange of cell neighbors oc-
curs naturally through T1 topological transitions.

Figure 6: A Sample SPV cell: the yellow dotted
line at the periphery represents perimeter p0; orange
coloured space is the area a0

Figure 7: Dynamics of an active particle [38]; ni rep-
resents the director

2.1 Binary Mixtures

To verify our first hypothesis, we mix equal number of elongated cells and roundish cells (target shape
index as defined in the previous section) together. For the second hypothesis, we study mixtures with
different cell size ratios. Since its is a 2D system, cell areas are tweaked to change cell size. The minimal
pattern formation seen in the first model is quantified with respect to a reference state. We chose to create
a VT and tag half of the cells, chosen randomly, as one type and the rest as the other type. This reference
state is named RVT- Random Voronoi Tesallation for the rest of the report.
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2.2 Quantification measures

Mean Square Displacement (MSD)- is the
displacement of a particle in a given interval of time
t. Here the position-x is with respect to the instan-
taneous center of mass of the system (as we are not
interested in the ballistic motion of the entire sys-
tem). Averaging is done over all particles, ensembles
and time when in steady state.

MSD(t) ≡< (x(t)− x(0))2 > (3)

Self-diffusivity Ds, is the diffusion constant with
which a particle typically diffuses in the tissue.

Ds = lim
t→∞

MSD(t)

4t
(4)

To have an estimate of interactions, it is some-
times useful to compare it to the bare or non-
interacting diffusion constant D0. For a non-
interacting but self propelled particle, with velocity
v0 and persistence time 1/Dr , system one can easily
calculate D0 = v20/Dr

D′eff =
Ds

D0
(5)

Figure 8: The dashed lines are the MSD for different
homogeneous systems ranging from high p0 = 3.86
(yellow) to low p0 = 3.5 (purple). The solid yellow
line denotes the MSD for non-interacting SPP model.
For this system, Ka = 1 and v0 = 0.1.

We need a good measure for quantifying demixing. The measures we are using are broadly operating at
two different lengthscales- 1) single cell size and 2) cluster size. A very simple measure at small-scale level
would be to look at the neighbour list of every individual particle and compute the proportion of homotypic
neighbours. This quantity then averaged over the entire tessallation is defined as the Demixing Parameter
-DP.

For a completely mixed scenario, the DP is 0.5,
whereas for a completely sorted out mixture, the DP
is maximum = 1 (in the limit of infinite systemsize).
There are some cases, like - striped domains, where
it drops below 0.5 as well.

DPi =
homotypic neighbors

total neighbors
(6)

This is very closely related to measures that
are used by other groups to quantify cell sorting-
heterotypic boundary length (HBL)[10], number
of homotypic contacts divided by heterotypic
contacts[40] and relative Length of Heterotypic In-
terface (rLHI)[33] which is the sum of all heterotypic
interfaces compared to the perimeter of the maxi-
mally sorted state. Because of their local nature, in
cases where there are numerous small clusters, these
parameters fails to capture information about domain
formation, size and shape.

Figure 9: rLHI-The diagrams represent symbolized
aggregates (light blue circles) in which the labelled
cells occupy the same area (black surface), but with
different distributions. [33]

Recalling from phase separation in immiscible liquids, a liquid like domain, inside another liquid prefers
to be spherical as it is the most energetically favourable configuration. But as our mixtures are more
complex-viscoelastic entities, we may not get such compact cluster formation given the accessible region of
simulation time. Therefore, having a quantification for an effective radius and asphericity can prove to be a
good measure of validity of different theories too.
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Radius of Gyration Tensor- <, defined below,
can help us understand this asphericity better.

< =

[
<xx <xy
<xy <yy

]
(7)

Where each component is defined as-

<xy =
1

N

N∑
i=1

(xi −Xcm)(yi − Ycm)

Diagonalizing < gives us with two eigenvalues in 2D-
(λ1, λ2). The trace is Radius of Gyration -Rg
which tells us about the effective radius of a cluster.
It is the root mean square deviation of each mem-
ber from the center of mass of the cluster. It can be
computed as-

R2
g =< r2i > − < Rcm >2= λ1 + λ2 (8)

Figure 10: Radius of gyration of fractal like clusters
formed by highly elongated cells, when mixed with
roundish cells.

We have already seen very compact domain formation in cell-cell co-cultures in figure:3–a. Fractal Di-
mension -Df is a great tool to understand how compact a cluster is. String-like clusters can be differentiated
from compact clusters using Df [42].

N ∝ RDf
g (9)

where Df is the fractal dimension. Hence a Df of 1, indicates string-like cluster whereas a Df of 2,
indicates a compact 2-dimensional cluster like a disc.

For systems with periodicity a length scale can be
extracted using the structure factor - S

S(k) =
1

N

〈∑
i,j

eik·rij

〉
(10)

where rij is the vector between all the pairs of
particles in the system. Since there is no angular
dependence for isotropic systems, I deal with the ra-
dial distribution in k-space of S mostly. S(k) is the
fourier transform of Pair Correlation function -
g(r). g(r) accounts for the probability of finding the
center of a particle a given distance from the center of
another particle by normalizing by the density; thus
at large values of r it goes to 1, uniform probability.

g(r) =
1

2πrNρ0

N∑
i

N∑
j

δ(r − rij) (11)

Figure 11: Structure factor for a single realization of
N=1600 cells of a homogeneous system; inset- Pair
correlation for the same system. The blue curves are
for p0 = 3.7 and the red curves are for p0 = 3.95.
As we can see the blue curves resemble the structure
factor of hard spheres.

In a two-component mixture, there are 3 quantities one can look at- SAA, SBB and SAB . Where first
two give the structure for each type of particle in the mixture, the later gives information about correlation
between different types of particles. Eventually we want to compute the characteristic length-scale in the
system by computing the dominant k as per the following formula-

L(t) =

qmax∫
2π/L

S(q, t)dq

qmax∫
2π/L

qS(q, t)dq

(12)
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qmax is chosen as the maximum value of k that occurs at the end of the first peak in structure factor. Time
evolution can give scaling behaviors that can help us understand the mechanism of cluster formation.

We set up the SPV code to simulate a N-particle binary mixture comprised half of Type A cells and half
of Type B cells. We then set up simulations (usually a hundred different initializations) run for a variable
number of timesteps as described below. For example, if we are trying to calculate DP, we try to run it long
enough such that DP saturates. After the runs complete, we use the parameters we described in the previous
section to analyze the properties of each individual model, after calibrating it first with the reference system
wherever possible.

3 Results

3.1 Binary mixtures with two target perimeters

Previous work has identified a “coarsening instability” in the vertex model [31, 32], where some cells
shrink in size and others grow. It is possible that heterogeneous p0 values exacerbate this problem. In many
real heterogeneous tissues, such coarsening is not seen, so we’d like to avoid that in our model. A visual
inspection of particles in this mixture indicated wide fluctuations in area. Hence we first try to find out what
are the values of Ka needed to avoid spurious dynamical or coarsening features in these bidisperse mixtures.

Figure 12: The graph plots effective diffusivity with respect to preferred perimeter; The Red curve is for
Ka = 100. It is compared to the blue curve which is for the standard Ka = 1 case

Increasing Ka ensures that cells do not contract below their target areas to achieve a lower p0. Figure
above shows that increased area stiffness has nearly no impact on the fluidity (computed using eq 5 ,4 to
compute the effective diffusivity) of systems homogeneous in p0. So even with huge dispersity in p0 , I now
have a way to reduce the coarsening that frustrates the entire tessellation ,without compromising on fluidity
of the components.

Since we’re interested in finding the cause behind demixing, we need to understand what region of this
multi-dimensional parameter space is useful for our objective. In other words, do we need to check all of the
phase space (solid-solid, solid-fluid, fluid-fluid) or is it useful to focus only on the fluid-fluid region?

Fluidity is very crucial for demixing as cells need to move to sort. We already have an idea of fluidity from
results in homogeneous mixtures [20]. But we need to understand how does the fluidity of each individual
tissue type influence the fluidity of the two-component system? Since a 2-component system can have many
possible compositions, we can think of this space being spanned by an average value of shape index and
difference between two shape indices. Since in our case, area is constrained to be unity, average value of
shape index can be unambiguously denoted by < p0 >= φap0a + φbp0b and the difference is denoted by
∆ = p0b − p0a. We plot (in figure 13–b) the diffusivity for a fixed < p0 >= 3.9. From the color plot (figure
13–b), the system is solid-like when ∆ is large enough so that one of the components is solid. For all other
compositions, even for the < p0 > not shown here, the mixture retains the fluidity of < p0 >. This behavior
was found similar for some other values of < p0 > ranging from solid-like values to liquid-like. This analysis
suggests that the dynamics in solid-fluid mixtures is suppressed, so that demixing is likely very slow and
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(a) (b)

Figure 13: (a) A sample of fluid-solid micro-segregation: elongated cells(p0 = 3.95) are mixed with roundish
cells (p0 = 3.75) (b) The color plot represents the effective diffusivity as a function of ∆ and percentage of
type A (high p0) cells for a fixed value of < p0 >= 3.9 (fluid-like). The color represents D′eff ; hence the
darkest shade of blue is the region with diffusivity below cut-off and hence solid-like.

we already know solid-solid mixtures are not expected to sort. Hence we can now focus only on fluid-fluid
mixtures. Hereafter we’ll look at just 50-50 mixtures for simplicity.
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Demixing Parameter

In conventional liquid-liquid mixtures, one would expect the mixture to sort if the components have
different viscosities. For homogeneous systems, it is already known that in fluid regime, higher p0 corresponds
to a higher fluidity. Therefore mixing equal number of cells with two different p0, is expected to demix. But
just by looking at figure 13–a, we observe a much smaller scale segregation. Visually it is not clear if it is
distinguishable from a random mix of both types. DP being a local parameter is sensitive enough to pick
these small changes. To calculate DP, we use eq 6 here.

(a)

(b)

Figure 14: (a) Demixing Parameter is plotted with logarithmic time for a wide range of fluid-fluid mixtures
of same < p0 >= 3.85; The ∆ decreases from a maximum value of 0.2 to zero, in steps of 0.02. The inset is
the same graph in linear scale for both axes. (b) The steady state values of DP is plotted against ∆. Inset:
a double logarithm plot of saturated steady state values of (DP-0.5) vrs ∆ shows exponent to be close to 2.
Points with magenta marker are for mixtures with < p0 >= 3.85 and the ones with green markers are for
< p0 >= 3.95

Contrary to our naive expectation, they have a very minimal amount of demixing even for the largest fluid-
fluid ∆. Unlike liquid mixtures, the demixing doesn’t keep increasing till it becomes completely separate.
Instead it saturates with a timescale that seems to depend on how far the least fluid component is from
being rigid. The saturation value does seem to increase with disparity in a quadratic fashion (shown in figure
14–b).
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Although the sorting is so minimal, the small clusters might still be more compact than a mixture with no
bidispersity i.e RVT (as defined in sec 2.1). We expect this because in a viscoelastic mixture, local viscosity
disparity might cause compactification of clusters much faster than the cluster coalescence timescale.

Since the aim is to test compactification as a function of shape disparity, the first natural quantity is the
Fractal Dimension (Df ) of these clusters. We compute it by looking at the scaling laws for cluster size (to
compute which I wrote a MATAB code 5.2 ) with respect to RoG using eq:8. For more compact clusters like
a circular disc, the Df should be the same as two whereas for extremely linear thread-like clusters will have
a Df closer to one. Hence the question we are trying to answer here is if the fractal dimension of segregated
state is distinguishably lower than that of RVT. For better comparison, I choose the maximally segregated
fluid-fluid mixture from figure-14–b. I compute the Df for RVT in two different ways. Only one of the two
methods is shown in the main text. The other method 5.1 requires computing the percolating cluster scaling
with respect to system-size. It gives value of Df (∼1.9) very close to already found value (∼1.89) for RVT
whereas the straight forward method used here might not be as accurate(∼1.9).

Figure 15: A double logarithm plot of cluster size vrs radius of gyration is plotted. The dashed yellow line
represents an Df of 2, green circles represent RVT and has an Df of ∼ 1.90 and black diamonds represent
the mixture < p0 >= 3.85 and ∆ = 0.08 (for a ∆ higher than this the solid component enters into the solid
regime). The solid lines are a linear fit to the data of respective colour. The linear region of the curve is
analyzed for the slope.

The figure shows that the clusters formed are comparable to the RVT, or if anything even more branched
than the RVT. This is a good indicator of the fact that this system is not segregating in a liquid-like manner,
in contrast to observations made in experiments on two cell types.
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3.2 Binary mixtures with two target areas

After studying the impact of shape disparity in
cell sorting, we next study the effect of dispersity in
area. The mixture is comprised of equal number of
smaller a0 cells and larger a0 cells, chosen such that
they average out to unity. We start from an initial
configuration in which both the components are ran-
domly mixed. For the results shown here, I have fixed
the shape index s to 3.95 to mimic fluid-like cells. α
here denotes the ratio of preferred a0 s for both the
types. I have also studied a small number of sim-
ulations with fixed perimeter instead of fixed target
shape index but did not see much motion at few par-
ticular phase points so did not pursue it further.

Figure 16: A typical configuration for a 50-50 mix-
ture of cells with same shape target index but very
different areas ; α = 2.5; usual parameter values for
Ka = 1, v0 = 0.1, Dr = 1, dt=0.01

Demixing Parameter

We try our simplest parameter for demixing for small propulsion speeds. Looking at a snapshot of the
video shows much more compact clustering than that seen in the previous model. And even in experiments
the demixing is quite high. Hence we want to check if the demixing is really close to 1.

Figure 17: Increase in DP with respect to time is plotted for α = 2.5. Different colors represent Ka values-
0.0625 (blue), 0.25 (red) and 1 (yellow). On left, the analysis is done for a lower velocity v0 = 0.05 whereas
on the right it is for v0 = 0.1. The y-axis goes upto the maximum value possible i.e 0.5.

In the figure 17 we see that the demixing, though higher than the previous case, is not very close to 1.
To support this demixing result we try to see signatures of clustering using another measure for demixing

like a lengthscale computed using the Structure factor for the clusters. We use structure factor because
this is typically used in fluid simulations and one can compare the exponents found in literature directly to
compare and contrast. For high clustering , we want to check if we acquire a peak very close to k = 0.

The figure 18 shows that we do see a huge peak very close to k = 0 although one needs to do ensemble
averaging over several realizations to know the exact lengthscale.

The mechanism behind this segregation is not confirmed still, even though we ruled out persistence being
the cause. Area stiffness and activity do seem to intensify demixing upto some extent.
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Figure 18: On left: Pair correlation function g(r) is plotted against radius. On Right- Structure factor is
plotted against momentum k in units of 2π. The inset shows a portion of the data that is analyzed here.
α = 2.5; usual parameter values for Ka = 1, v0 = 0.1, Dr = 1

4 Discussion

Mixing together cells of two different shapes gives rise to a very minimal amount of segregation. This
micro-segregation is quantified by using several different parameters ranging from a scale as local as a single
cell to more non-local measures. Local measures do indicate a small, distinguishable amount of demixing
but global measures seem to indicate that the clustering is no different from the random placement of two
distinct cells in a confluent tissue. One possible mechanism for these fractal-like cluster to form is to reduce
the shape anisotropy by stacking elongated cells together. On the other hand, mixing two different sizes of
cells together gives rise to a significant amount of demixing. Demixing increases with an increase in area
disparity. More non-local measures like structure factor also give signature of clustering. We ruled out
persistence as one possible mechanism, but activity and area stiffness do play a role. We plan to run more
simulations to confirm this bi-disperse areas result.

Random Voronoi tessellations has been studied in great depth (some of the findings have been reproduced
in the appendix 5.1) and hence, for the micro-segregated case, there is a good null model with respect to
which one can compare and contrast the demixing. But for mixtures bidisperse in area, people generally use
a radical Voronoi tessellation[30]. This method does Voronoi tessellations differently than the way done in
this manuscript. The tessellation algorithm respects the size difference to begin with. Our current algorithm,
which does not respect the size, might play a role in the cluster formation and so we propose to alter our
current algorithm to use the radical Voronoi tessellation and test for robust of our two different sizes results
presented here. A quick check on implementing bidispersity in vertex model can also tell us about the effect
of voronoi tessellation.

Given the small amount of demixing observed in the different shapes case, let us compare our results
with particle systems. If there is a segregation in the bidisperse particle systems, it is mostly because of
excluded volume interactions, i.e. entropically driven segregation occurs. A mixture of long cells mixed
with roundish ones, entropically favours longer cells to stack along their longer edge, as this will increase
the excluded volume. 3D mixtures do show such stacking up of longer particles. Similar, is the incentive of
larger cells getting attracted to larger ones[47]. But since ours is a space-filled model, this effect cannot play
a role in segregation. Naively, one would not expect segregation to occur in a mixture bidisperse in area in
a confluent tissue.

Looking from the perspective of pure liquids demixing from each other, the micro segregation resembles
a solid-like demixing because the clusters formed are not spherical. If it were liquid, two different viscosity
liquids should sort but we don’t see this here. Even for the mixture bidiperse in area does not form clusters
that are as compact as liquid droplets. The larger particles easily break into a cluster and the clusters are
very transient. Perhaps a better comparison would be by comparing the Ostwald ripening exponent for this
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process. Ostwald ripening occurs when two droplets of the disperse phase collide to form one larger and one
smaller droplet. With continued collisions, the smaller droplets decrease in size until they disappear/become
solubilized in the continuous phase. The large droplets continue to grow and eventually separate out. This
growth exponent in 2D is found to be (t/lnt)1/3 [46] and in 3D- t1/3 [45].

One of our main objectives was to understand the experimentally observed robust sorting in bidisperse
mixtures of malignant and healthy cells. Since we do not yet observe that in the modeling, perhaps we need
to put heterotypic line tension between two different cell types explicitly into the model to achieve more
compact segregation. The experiments also indicate a difference in activity between the two types. We will
next explore both possibilities to continue to search for physical mechanisms for cell sorting.
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5 Appendix

5.1 RVT Characterization

These are random voronoi tesallations in which half of the total number of cells in the box, are randomly
chosen to be of Type A. To have a visual idea of how it actually looks, two images for RVT are put in
Fig:19–a. In a mixture of two components, one of them has to percolate. Hence, since it a 50-50 bimixture
and no particular component that outnumbers the other, Type A percolates in statistically half of the cases.

(a)

(b)

Figure 19: (a) Some samples of RVT; The colored cells are Type A and the rest inside the box are Type B.
Left image is one is which Type A doesn’t percolate whereas in the right one it does. The different colours
just represent distinct Type A clusters. (b) The cluster size distribution (CSD) plotted in two different
scales: the left one represents the raw counts whereas the right histogram bins probability ie normalized by
total number of clusters. There are 100 ensembles taken into consideration for this plot. The left plot tell
us that there were nearly 50 percolating Type A clusters in the entire lot.

Fractal dimension for the Reference state

It is known [39] that for RVT, the threshold ratio, for percolation, of Type A cells is 0.5. To prove the
fractal nature of this threshold system let us compute its FD. One way is to look at the largest clusters and
how it scales with respect to system size L. Below is a scaling for such a binary mixture.

We see that at critical ratio ie 50-50, the fractal dimension is slightly less than 2. We get 1.9 which is
close to the value 1.89 as reported in ref-[41]. For a higher percentage of type A cells, I get the dimension
to be 2.
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5.2 MATLAB code for cluster finding

cells=500; % Total # of cells

a=sqrt(cells); % The side length L

Na=cells/2; % Type A cells for 50-50 bidisperse mixture

ensemno=50; % Number of realizations

% U is a cell array.

Here it is expected that a maximum of 30 clusters

%can be found. For each realization, it has information about all the

%clusters and it’s members.

U=cell(30,ensemno);

[row, col]=size(U);

for i=1:row

for j=1:col

U{i,j}(1)=0;

end

end

toplot=[];

for ensm=1:ensemno

% Let’s first clear all the variables that are not needed later.

clearvars -except cells Na toplot ensemno ensm a myXdata myYdata

posXFiles U frame writerObj

%---Putting PBC

%-----------------

for b =1:cells % \_/ \_/

x(b,1)=myX16data{1,ensm}(1,b)-(floor(myX16data{1,ensm}(1,b)/a))*a;

x(b,2)=myY16data{1,ensm}(1,b)-(floor(myY16data{1,ensm}(1,b)/a))*a;

% x(b,2) is the y-coordinate of cells

end
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%--- Creating Images

%---------------------

E=x;

E(:,1)=x(:,1)+a;

W=x;

W(:,1)=x(:,1)-a;

N=x;

N(:,2)=x(:,2)+a;

S=x;

S(:,2)=x(:,2)-a;

SE(:,1)=x(:,1)+a;

SE(:,2)=x(:,2)-a;

NW(:,1)=x(:,1)-a;

NW(:,2)=x(:,2)+a;

NE=x+a;

SW=x-a;

X=[x;NE;SW;E;W;N;S;SE;NW];

%This keeps adding the new matrices at the end

[vx,vy]=voronoi(X(:,1),X(:,2));

[v,c] = voronoin(X);

%Now I have the information about the vertices of each cell in proper

%order of connectivity

%------------------ Series of inversions

%-----------------------------------------

ix=[c{:}]’; % creates column vector of vertices

cellLengths = cellfun(@length, c);

cs = cumsum(cellLengths);

jy = arrayfun(@(k) nnz(cs < k), (1:cs(end))) + 1;% creates

%corresponding cell number columnlike [1,1,2,2,2,3,3,4,4,4,4,....]

S = sparse(ix, jy, true, size(v, 1), size(c, 1));

[i,j,s] = find(S); %[vertex,cell,logical]

A = full(S);

[ii, jj] = find(A);

Cinv = accumarray(ii, jj, [], @(v) {v.’});%gives me the cell array to

% know what are the cells connected to a given vertex

%------------------ Homotypic Nearest Neighbors (NN)

%---------------------------------------------------

B=zeros(Na,Na);

for i=1:Na

for j=1:length(c{i})

for k=1:length(Cinv{c{i}(j)})

Inbox=Cinv{c{i}(j)}(k)-((floor(Cinv{c{i}(j)}(k)/cells)))*cells;

if (Inbox<=Na && Inbox~=0)

%---

nn=Inbox; %In box meaning inside the box

B(i,nn)=nn ;

%----

end

end

end

end

nz_Cell_Cell_cellarray = arrayfun( @(IDX) nonzeros(B(IDX,:)), 1:size(B,1), ’Uniform’, 0);

%---------Cluster-finding algorithm

%-------------------------------------
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D=[];

clusterNo=0;

T=zeros(1,30);

for l=1:Na

if(ismember(l,D)==0) %% do NOT ever use LOGICALS.. use ismmember or isdiff

clusterNo=clusterNo+1;

T=zeros(1,30);

V=[]; %stores ek cluster mein kahan tak gaye

T(1)=l;

for n=1:50

n

T0=[]; %reset this for each tree branch so we can find the actual T

for p=1:length(T)

if(ismember(T(p),V)==0 && T(p)~=0)

T0=union(T0,nz_Cell_Cell_cellarray{T(p)});

end

end

V=union(V,T);

T=zeros(1,30); %reset to feed new ones

for q=1:length(T0) %Check for new members only

if(ismember(T0(q),V)==0)

T(q)=T0(q);

end

end

U{clusterNo,ensm}=union(U{clusterNo,ensm},V’);

% if no new member added with this iteration, stop

% iterating.

if(nnz(T)==0)

break

end

end

D=union(D,[U{:,ensm}]); % (’ =transpose hai)

end

end
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